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Abstract—The energy equation expressed in bipolar coordinates is used to determine the temperature
distribution in the thermal entrance region of an eccentric annular duct. An implicit alternating-direction
method is used in the numerical solution. The analysis of the hydrodynamic entrance region, which provides
the velocity distributions needed for the thermal solution, was obtained from a published solution by the
present authors. A published Graetz solution for an eccentric annulus and a published combined thermal and
hydrodynamic entrance region solution for the circular tube are used in the verification of the present
solution. In the present analysis 17 combinations of fundamental thermal boundary conditions, Prandtl
number, and annular geometry are considered. The annular geometry with equal relative eccentricity and
radius ratio of 0.5 is used to study the effects of eccentricity and Prandtl number on the fluid temperature and
surface heat flux distributions.

NOMENCLATURE

location of the positive pole of the bipolar
coordinate system [m];

cross-sectional area of the duct, n(rZ, — r2,)
[m?];

specific heat [J/(kg K)];

hydraulic diameter, 2(r,, — r;,) [m];
absolute eccentricity, or center-to-center dis-
tance [m];

coordinate scale factor, defined by equation
) [m];

dimensionless h, h/D, ;

fluid thermal conductivity [W/(m K)];
distance in normal direction [m];

local Nusselt number, defined by equation
(35) and Table 2;

Nu averaged around the complete circular
arc of a duct wall at a fixed Z, defined by
equations (38) and (39);

Nu averaged over the entire surface area of a
wall from the inlet to a fixed Z, defined by
equation (40);

Prandtl number, uc/k;;

local heat flux [W/m?];

volume rate of flow, AW [m?/s];

radius [m];

Reynolds number, pwD,/u;

time [s];

local temperature [K1;
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mixed-mean average temperature, defined
by equation (30) [K];

{ component of velocity [m/s];
dimensionless u, puD, /u;

n component of velocity [m/s];
dimensionless v, pvD,/u;

axial component of velocity [my/s];
average w (volume rate of flow per unit area)
[m/s];

dimensionless w, w/w;

Cartesian coordinates in the transverse plane
[m];

axial coordinate [m]);

dimensionless z, (z — z,.)/(D,Re).

Greek symbols

Y’
AZ,

&,

&

radius ratio, r,./r..;

dimensionless axial step size;

relative eccentricity, e/(r,,, — ri);

bipolar coordinates in the annular cross-
section ;

dimensionless T, defined by Table 1;
dimensionless T, defined by equation (32);
coefficient of viscosity [Pa.s];

density [kg/m?];

dimensionless ¢”, defined by equations (21)
and (22);

@ averaged around the complete circular arc
of a duct wall at a fixed Z, analogous to Nu of
equations (38) and (39);

circumferential arc length measured along
either wall (a value of 0° corresponds to the
widest point of the annular gap and a value of
180° corresponds to the narrowest point).
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Subscripts
e, entrance (inlet to the duct);
i, indices which together denote points of the
finite difference grid (i corresponds to { and j
to 1);
iw,  inner wall;
ow, outer wall;
max, maximum.

1. INTRODUCTION

WHEN A confined flow with fully developed velocity
and temperature profiles experiences a step change in
thermal boundary condition, the resultant thermal
entry region problem is known as the Graetz problem.
Hatton and Quarmby [1] and Lundberg et al. [2]
analyzed the laminar flow Graetz problem for con-
centric annuli. Vilenskii et al. [3] consider only heat
flux boundary conditions in their numerical solution
of the Graetz problem for laminar flow in eccentric
annuli. Cheng and Hwang [4] and Trombetta [5]
obtained infinite series approximations for the fully
developed temperature distributions for laminar flow
in eccentric annuli.

When heat transfer from the walis of a duct begins at
the inlet to the duct, both velocity and temperature
profiles develop simultaneously. Murakawa [6] and
Heaton et al. [ 7] analyzed this combined thermal and
hydrodynamic entrance region problem for laminar
flow in concentric annuli. Shumway and McEligot [8]
numerically solved both the Graetz problem and the
combined entrance region problem for laminar flow
with variable properties in concentric annuli.

The basis for the present analysis is Feldman [9]
which provides the only known solution to the com-
bined entrance region problem for laminar flow in
eccentric annuli. Feldman er al. [10] provides the
hydrodynamic entrance region solution which is used
in the present solution of the thermal entrance region.

2. MATHEMATICAL MODEL
The fluid is assumed to be incompressible, laminar,

Newitonian nd to have conctant nranertiec Radvy
nNeWiItNIan, and to nave Constant properucs. ooay

forces, viscous generation of heat and axial heat
conduction are neglected. Since the steepest axial
temperature gradients generally occur at the inlet, the
error introduced by excluding axial conduction is
expected to decrease with increasing distance from the
inlet. Moreover, accurate results can not be expected if
the Peclet number (product of Reynolds number and
Prandtl number) is less than 50. Some of the many
investigations concerning axial heat conduction in
laminar duct flow are discussed in [11]. Thus only
forced convection is analyzed and the governing

energy equation in vector form is
DT &k
—— =Ly (1)
Dt pc

where ¢ is time, p is density, k; is thermal conductivity,
T is temperature, and c is specific heat.
The bipolar coordinates used in [10] in the repre-
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sentation of the hydrodynamic model are also used in
the representation of the energy equation, equation (1).
The bipolar coordinates ({,j) are related to the
Cartesian coordinates (x,y) by the following

..................... Wyl Y e 1080

two

equations.

x\* :
<~> +<‘—coth§> =csch? {for—x < { <
a a

8

(2)
x 2 2
(— - cotn) + (—) =csclpfor0<np<2n (3)
a a

Figure 1 shows curves of constant { and constant
plotted as functions of x and y.

The geometry of any eccentric annulus can be
characterized by the radius ratio, y, and the relative
eccentricity, ¢ which are given by

Y= l;w’ (4)

f=— (5)

where the subscriptsiw and ow correspond to the inner
and outer wall of the annulus, respectively, r is the wall
radius, and e is the absolute eccentricity, or center-to-
center distance, of the annulus. As explained in [10]

Y1 — )+ (1 + &)

cosh {,,, = ——— 7 (6)
2e
1+e?)+(1 ¢
cosh ¢, = X‘__ﬁu__g) )
2ey

These two equations and planar symmetry confine the
region of interest to ({,,, < { € {, 0 < 1 < m).
The general orthogonal curvilinear coordinate ex-

pressions for the vector operations of equation (1)
along with the necessary bipolar coordinate scale
factors can be found in [12]. In the bipolar coordinate
representation of equation (1), the second derivative of
temperature with respect to the axial coordinate, z, is
not included because axial heat condition is assumed
to be negligible. Hence the energy equation may be
written as

udT v oT oT ke 1 [0*T T

- —t - —tw—=— — |+ —| (8)

h & h oy dz  pc h? I:ﬁCl 6;12}
where u, v and w respectively are the {, n and z
components of fluid velocity, h is a bipolar coordinate

(i I R B
10— —
08
3/ 06—
04—

02—
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Fi1G. 1. Bipolar coordinate curves for the region (1.0 < { <
20,0 < < n).
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Table 1. Dimensionless temperature and boundary conditions

Fundamental Dimensionless Boundary conditions
solution Case temperature® QOuter wall Inner wall
T-T,
1A 6= =1 6=0
Tw-T.
First kind T-T,
1B f=— 8=0 8=1
w T;
k
2A 6 =——(T - T.) @, =1 o, =0
Gow Dh
Second kind k
2B =T =T) o, =0 o, =1
o Dy
T-T,
3A 8= T =1 P, =0
Third kind T"w:TT°
3B f =t ®,, =0 0=1
7;w - T;
4A f=— (T-T) P, =1 4=0
Fourth kind Gow Dy
4B §=—AT - T) =0 @, =1
Gow Dh

*The subscripts e, ow, and iw refer to the entrance to the duct, the outer surface and inner

surface, respectively.

scale factor, given by

S — 9)
cosh { — cosn
and a is the location of the pole (see Fig. 1).

Before equation (8) can be solved, thermal bound-
ary conditions must be specified. Although any com-
bination of temperature and heat flux distributions
may be imposed at the walls, in order to produce
results of general utility, we will assume that at each
wall of the duct either the temperature or the heat flux
is uniform. Because the energy equation is homo-
geneous and linear in temperature, temperature so-
lutions may be superimposed. Reynolds er al. [13]
have taken the principle of superposition into con-
sideration in defining four fundamental solutions
corresponding to four pairs of thermal boundary
conditions. For each solution, the inlet temperature
distribution is uniform. The four fundamental kinds of
solutions have the following boundary conditions:

First kind—one wall is at the constant temperature
of the entering fluid, while the other is at a different
constant temperature;

Second kind—one wall has a uniform heat flux,
while the other is insulated;

Third kind—one wall is at a constant temperature
different from the inlet temperature, while the other
wall is insulated;

Fourth kind—one wall has a uniform heat flux,
while the other is at the inlet temperature;

The heat flux, ¢", at either wall according to
Fourier’s law, is

aT

Ilz—kl_’
q t an

(10)

where n is the direction normal to the wall and the
direction of positive g”. The required temperature
gradient in bipolar coordinates is
T 18T
n h ol
It is convenient to define ¢” to be positive when it
causes heat to flow inte the fluid. Thus, the heat flux

into the fluid at the inner wall will be in the negative {
direction and the two wall heat fluxes are

16?}
" =_k — ,
qow f(h a‘: -
1T
=tk .
K f(‘hag)iw

3. METHOD OF SOLUTION

{1

(12)

(13)
Equation (8) and the boundary conditions are

expressed in dimensionless form with u, v, w, z and h,
respectively, represented by

D,
U=”";—‘x (14)
D
V=”’; b (15)
w
== (16)
w
zZ—2Z
z="" (17)
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_ (18)
D,

where p is the coefficient of viscosity, w is the average

axial velocity, i.e. volumetric flow divided by the cross-

sectional area, z, is the value of z corresponding to the

duct inlet, and D, and Re are the hydraulic diameter

and the Reynolds number respectively given by

D, =2r,, — 1) =2a(1 —y)esch(,,, (19)
vD.

RE =27, (20)
u

Table 1 provides the definition of dimensionless
temperature, 6, and the boundary conditions for each
of the four fundamental solutions. In accord with
equations (12) and (13), the dimensionless heat flux at
the outer and inner walls are:

100
o =—{-—=1, 21
o (h az).,w e
1 00
o = - — . 22
"“ +(h ac).w 22

In all cases listed in Table 1, 6 equals O at the inlet, and
0 or @ equals 1.0 at the heated wall and 0 at the
unheated wall.

The dimensionless form of equation (8) is

P (U0 Vo a6y (@29+520
"Ha THm o) m\eg

(23)
where Pr is the Prandtl number and is given by
uc
Pr=". 24
T (24)

By combining equations (9), (18), and (19), one can
express the dimensionless scale factor, A, as
0.5sinh {,,

= . 25)
(1 — y)(cosh { — cosn)

A finite difference solution for equation (23) is ob-
tained from a numerical marching technique in which
the thermal entrance region is sectioned into a series
of parallel planes perpendicular to the Z axis. The
thermal solution at the first plane beyond the inlet is
obtained independently of all succeeding planes. The
solution for the second plane depends only upon that
for the first and, similarly, the solution for the k + 1
plane depends only upon that for its immediate
predecessor, the k plane. Thus, the entire thermal
entrance region is solved by solving one plane at a time
in succession.

In each plane, the region ({,,, < { < {;,,0 <n < 7)
is sectioned by sets of constant { curves (with index i)
and constant 5 curves (with index j) to form a finite
difference grid covering half of the symmetric annular
cross-section. This grid is the same one used by [10] to
solve the hydrodynamic model and obtain values of U,

V,and W at each grid point of each Z plane. While the
grid has 24 equal » intervals, the 32 { intervals are
generally unequal with very fine intervals near the two
walls where large velocity and temperature gradients
occur. Hence, there are 775, ie. (32 — 1)+ (24 + 1),
interior grid points for which values of 8, ; are required
and 25 points on each { boundary for which 6, ; is
governed by the boundary conditions given in Table 1.

At each Z plane the values of U, ;, Vi and W, ; were
obtained for each of the 775 interior points from the
hydrodynamic solution presented by [ 10] and are used
in the numerical approximation to equation (23),
which is represented at each of these 775 grid points.
The values of 8 beyond 0 < y < 5 which are needed for
the n derivatives at = 0 and # = =7 are obtained
from symmetry conditions at these two values of 5. At
each set of 25 points along { = {,, and { = (.
the boundary conditions provided in Table 1 are repre-
sented. For the constant temperature boundary con-
ditions, this representation is either 6 = 0 or 8 = 1.0,
and for the constant heat flux boundary conditions,
the numerical approximation to ¢6/8( is set equal to
+ H or to — H. Hence, in all cases at each Z plane there
are 825 equations and an equal number of unknown
values of 0, ;.

An implicit alternating-direction method [14] was
used in the numerical solution of the energy equation.
This solution method uncouples the groups of alge-
braic equations which result from the finite difference
representation of equation (23). In the solution at the
first plane beyond the inlet, the #n derivatives are
implicitly represented by unknown values of 6, ;in the
solution plane, while the { derivatives are evaluated
with the known uniform 6 = 0 temperature distri-
bution at the inlet. In the solution at the second plane
beyond the inlet, the alternate arrangement is used
with the { derivatives implicitly represented in the
solution plane while the 5 derivatives are evaluated
with known 6, ; values of the first plane. This alternat-
ing two-step cycle is repeated until the entire thermal
entrance region has been solved.

At the planes where the 5 derivatives are expressed
implicitly, the algebraic equations corresponding to
points along a curve of constant ; are independent of
those for all other values of #. The analogous situation
prevails at the planes where the ( derivatives are
expressed implicitly. This method is advantageous
because it is much easier to solve a series of inde-
pendent groups of simultaneous equations than itis to
solve the same total number of equations as one
simultaneous set. Since each independent group of
simultaneous equations can be represented by a
tridiagonal matrix, a simple direct method of solution
(see [14]) can be used.

The finite difference approximations of the {, n and
Z derivatives of equation (23) are analogous to their
counterparts used by [10] for the momentum
equation. The axial derivative in the k + 1 planeis a
simple 1st-order backward difference involving values
of 0 in both the k + 1 and k planes. The two n
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derivatives were grouped together and approximated
by a finite difference approximation provided by Allen
[15]. Similarly, the two { derivatives were grouped
together and approximated by the extension of Allen’s
method provided by [10] for unequally spaced grids.
When the first derivative is not present, Allen’s method
produces the familiar central-difference representation
of the second derivative, which can be obtained from a
2nd-order Taylor series approximation.

The heat flux boundary conditions require that
00/ be approximated at {,, and {,,,. Since all of the {
intervals in the finite difference grid occur in pairs of
equal size, a 2nd-order Taylor series approximation
for equally spaced grids can be used. Hence, at the
outer wall where {_, corresponds to the grid index

30,;,—40,; + 05

i= 1,
( ) 1
(’C ij 2AC

and at the inner wall where {;,, corresponds to i =

N +1,
(5_9> 30hay — 40+ 00 2D)
00 /w1 2ALy ’

where A{, and A{, are the sizes of the first and last {
interval, respectively.

In the Graetz problem, the velocity profile is fully
developed and only the temperature profile is develop-
ing. Hence, for this problem, equation (23) can be
reduced to

) (26)

2 ﬁ = 52_0 + 92_0, (28)
oz 3r  on?
where
Z' =Z/Pr. 29

In equation (28), W corresponds to the fully developed
flow solution and Pr does not appear.
The average mixed-mean temperature, T, at any

L}

axial plane for constant density is defined as

f TwdA
T=%4 30
0 (30)

where A is the flow area and Q is the volumetric flow
rate. By definition, Q is the product of A and the
average axial velocity, w. When equation (30) is
expressed in bipolar coordinates, the result can be
written as

- 2 LS
T=—r—— w
Tr2, — I W L f Tw?dldy, (1)
Sow
or in dimensionless form as
8 1 —_— T {iw
g=> -7 f j OWH?drdn,  (32)
ml+yJo),

where 8, the dimensionless average temperature, cor-
responds to 6 in Table 1 when Treplaces T. Since there
are an even number of equal n intervals and all of the {

HMT 26:2 - G
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intervals are in pairs of equal size, the double-integral
in equation (32) is approximated with the aid of
Simpson’s 1/3 rule.

Since, for boundary conditions of the second kind,
the heat flux at each wall is specified, 8 can be directly
calculated from energy considerations. Hence, in this
special case

4
gz». = m (z/Pr), (33)

4y
0,, = —— (Z/Pr), 34
=15 @ (34)
where the subscripts 2A and 2B correspond to Cases
2A and 2B of Table 1.
The local Nusselt number, Nu, which at either wall

can vary both circumferentially as well as axially, is
defined as

h.D
Nu=—-2 (35)
ke
where the film coefficient, A, is given by
4
P = T - T (36)

”

and T, is the local temperature at the wall and q7, is ¢,
or g, as given by either equation (12) or (13).
Equations (35) and (36) yield

G
Nu=--2 —
ke T, —T°

(37)

The definitions of # given in Table 1 and equations
(12), (13),(21), (22), and (37) yield the Nu relationships
given in Table 2.

Table 2. Local Nusselt number

Fundamental
solution Case* Outer wall  Inner wall
g (Dow ‘Diw
1A 5 -7
First kind ! @ 0.
1B - s
) 1-8
2A L 0
Second kind 6-0 |
2B 0 —
0-0
¢0W
3A 0
Third kind 1-9 o,
3B 0 il
1-8
1 P,
4A T3 -
Fourth kind 0 6 11;
4B > _
) 0-6

* See Table 1.
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At any given axial location the Nusselt number
distribution around either wall may be integrated from
n = 0 ton = = and then divided by the included arc
length to obtain the circumferentially averaged Nus-
selt number, Nu. For the outer and inner walls,
respectively, the two Nu relationships, expressed in
bipolar coordinates, are

o 2 1 _— 4
Na,, = =7 J (Nu H),, dn,
n e

(38)

N, = 2= f (NuH),dyg.  (39)

ny o
In the analysis, the above two integrals are approxi-
mated with the aid of Simpson’s 1/3 rule.
A local Nusselt number distribution can also be
integrated over the wall surface areafromZ = 0to Z
= Z. When this result is divided by the wall surface

area, a surface-averaged Nusselt number, Nu, is ob-
tained. This quantity can also be obtained by integrat-
ing Nufrom Z = 0to Z = Z and dividing the result by
Z. Hence, for either wall

—_— ] (7

Nu = — Nudz. (40)

3

The integral in this equation is numerically approxi-
mated by

z__ Z-A7 e
f NudZ ~ ( NudZ + (Nu),AZ, {(41)
o] W0

where AZ is the size of the last axial step taken to
reach Z.

Because the finite difference solution employs
numerical approximations whose truncation errors
approach zero as the axial step sizes approach zero,
some initial experimentation was necessary to ensure
that sufficiently small step sizes were chosen. Ex-
tremely small values of AZ are used near the duct inlet
where steep axial gradients of temperature and flow
occur. In some of the hydrodynamic solutions of [ 10],
a AZ of 0.25 x 107% at the duct inlet was gradually
increased to 0.001. Although these step sizes are quite
adequate for the hydrodynamic solution, they cause a
local oscillation in the temperature solutions. In some
instances this numerical instability was extremely
severe. Empirically obtained stability criteria, used by
Torrance [16] in the numerical solution of 2-dim.
transient natural convection in an enclosure, suggested
the following criterion on AZ:

PrH*W

2 4 2
(AD?  (Any
where the minimum is taken over all interior grid
points, and A{ and An are the local interval sizes of the
finite difference grid. Although the above criterion
eliminated the numerical instability, the indicated AZ

is of the order of 107 7. Fortunately, the need for an
excessively large number of axial steps was avoided

AZ < min 42)
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since stable thermal solutions were obtained by grad-
ually increasing the 107 inlet value of AZ to 0.001 as
Z increased.

Fully developed temperature distributions were
obtained by solving the Graetz problem for a
sufficiently large Z/Pr. A typical Graetz solution
required 2100 axial steps (1050 two-step cycles) to
obtain a thermal solution at Z/Pr = 1.56. This
solution required about 4% minutes of computing time
on the Univac 1108 computer at the Carnegie-Mellon
University Computation Center. Additional details
concerning the Graetz and combined entrance region
solutions, along with the FORTRAN IV computer
programs used to generate them, can be found in [9].

4. RESULTS

The present solution for developing flow with Pr =
1.0 is compared with that of Hornbeck [17] for the
circular tube. Although for all values of ¢ the annular
geometry approaches that of the tube as y approaches
zero, the highly eccentric geometry (¢ = 09,7 = 0.1)
was chosen in order to produce a severe test of both the
present thermal model and the hydrodynamic model
of {10]. Contrary to the assumptions used in a similar
comparison presented in [9], in this paper the dimen-
sionless variables of the tube and the annulus are
defined in an analogous manner, with the hydraulic
diameter for the tube being its diameter and the
hydraulic diameter of the annulus being given by
equation (19). The wall of the tube and the outer wall of
the annulus are of uniform temperature, while the
inner wall of the annulus is insulated (see Case 3A of
Table 1). The data in Fig. 2 for the tube was obtained
by interpolation between Hornbeck’s Nusselt number
curves for Pr = 0.7 and Pr = 2.0. The data in the figure
for the annulus is Nu as defined by equation (38).

As another means of verification, the present model
was used to obtain the fundamental Graetz solution of
the second kind with the outer wall heated for the
geometry (¢ = 05,y = 04). The resultant surface
temperature distributions at the outer and inner walls,
which can be found in Figs. 6.9 and 6.10, respectively,
of [9], agree with the graphical data of [3].

For fundamental solutions of the second kind, @
obtained from the numerical approximation of
equation (32) can be verified with the exact 4 given by

28_.{ T T T

24 —— THIS WORK

20 (€09, r=01}
T —~—~— HORNBECK (TUBE] —

7]
12

8
4

| 1

0025

O i ) W I Il
0.0025 0.001 0.0
/Pt

Fic. 2. Nusselt number comparison for Pr = 1.0. This work
{& = 09,y = 0.1)vs the circular tube solution of Hornbeck
171
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either equation (33) or (34). Close agreement between
numerically calculated and exact values of § was
obtained in Graetz solutions for both the outer wall
heated case and the inner wall heated case. Additional
verification of the present thermal model and the
hydrodynamic model of [10] was obtained by
performing this § comparison for Pr = 1.0. A
fundamental solution of the second kind with the inner
wall heated was obtained for the geometry (¢ = 0.7,
y = 0.3). Table 3, which characterizes the thermal
entrance region for this case, provides a comparison
between 0 of equation (32) and 8,5 of equation (34). At
small values of Z/Pr, such as 0.01, small differences
between small values of § and 8, produce large
fractional errors. At higher values of Z/Pr, however,
only very small fractional errors are observed. For
example, at Z/Pr = 0.1 and 1.0 the fractional errors of
§ of equation (32) are only 0.69% and —0.13%,
respectively.

The effects of eccentricity and the influence of
Prandtl number were studied for the geometry (¢ =
0.5,y = 0.5). Since [3] has already solved the Graetz
problem with heat flux boundary conditions, tempera-
ture boundary conditions given by Case 1B of Table 1
were chosen for the present study. The Graetz prob-
lem, Pr = 1.0, and Pr = 0.05 are considered.

The Prandt] number determines the relative sizes of
the thermal and hydrodynamic entrance lengths. For
Pr = 1.0, both entrance lengths are of the same order
of magnitude. As Pr — o, the thermal entrance length
becomes much larger than the hydrodynamic one, and
the Graetz problem is approached. The effect of very
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small values of Pr can best be understood by referring
to equation (23). A very small Pr generally causes
the left-hand side to be very small except at small values
of Z where the quantity in the first set of parentheses is
large. Hence, beyond these small values of Z, 0 is
fully developed while the flow is not. Because the Peclet
number, ie. Re - Pr, must be at least 50 to preclude
significant axial condition of heat, the value Pr = 0.05,
which corresponds to liquid metals, was arbitrarily
chosen as being representative of the minimum Pr for
which the present analysis can be expected to produce
accurate solutions.

The Graetz temperature and wall heat flux distri-
butions of Figs. 3-5 dramatize the effects of eccen-
tricity. While Fig. 3 shows the 6 distribution across the
duct at the narrowest and widest points of the annular
gap, Figs. 4 and 5 respectively show the distribution of
@, at the heated boundary and the distribution of @,
at the unheated boundary. The arc length, Q in the
figures, is measured along either surface from the
widest point of the annular gap to the narrowest. All
three figures show that the narrowest point reaches
fully developed thermal conditions much closer to the
inlet than does the widest. Figures 4 and 5 show that
for Z/Pr = oo the largest heat flux occurs at the
narrowest point. This is as expected because when the
temperature is fully developed all of the heat transfer is
by conduction across the fluid from the inner wall to
the outer. Figure 4 also shows that near the inlet the
largest heat flux along the heated wall is at the widest
point rather than at the narrowest. This occurs
because convective heat transfer is very important near

Table 3. Fundamental solution of the second kind, inner wall heated, ¢ = 0.7,y

=03 Pr=10

Z/Pr O5* A Ot — 0 N_uiw§ ﬁiwﬂ
0.00001 0.000009 0.000014 0.01472 131.6 252.1
0.00002 0.000018 0.000029 0.02212 93.09 178.5
0.00006 0.000055 0.000091 0.03736 56.14 1039
0.0001 0.000092 0.000155 0.04774 4446 81.07
0.002 0.000185 0.000313 0.06597 3296 58.83
0.0006 0.000554 0.000927 0.09932 21.40 36.02
0.001 0.000923 0.001520 0.1196 18.00 29.09
0.002 0.001846 0.002952 0.1490 14.85 22.46
0.006 0.005538 0.008040 0.1879 10.20 15.33
0.01 0.009231 0.01245 0.1991 7.859 12.54
0.02 0.01846 0.02225 0.2791 5.594 9410
0.05 0.04615 0.04888 0.4830 3963 6.471
0.1 0.09231 0.09295 0.6183 3.267 5.003
0.2 0.1846 0.1836 0.7094 2.841 4.004
0.374 0.3452 0.3439 0.7452 — e
0.5 0.4615 0.4603 0.7505 2.647 3221
1.0 0.9231 09219 0.7524 2.637 2930
1.544 1425 1.424 0.7528 2.637 2.827

* See equation (34).
+ See equation (32).

} Maximum 6 in Z plane.

§ See Table 2 and equation (39).
9 See equation (40).
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Fic. 3. Local dimensionless temperature in the plane of
symmetry. Graetz, Case 1B, ¢ = 05,7 = 0.5

the inlet and the fully developed flow velocities are
largest at the widest point. This heat flux trend was not
observed near the inlet in the Pr = 1.0 solution
because in the developing flow solution the inlet
velocity profile is uniform.

Figures 6and 7 provide the axial distributions of @,
and ®_, which are defined in an analogous manner to
their Nu counterparts of equations (39) and (38),
respectively. In the Pr = 0.05 analysis, the temperature
solution became numerically unstable at Z/Pr =
0.074. Hence, beyond that point all Pr = 0.05 curves
are approximated with a dashed line. The Pr = =«
solution was obtained from equation (28) while the
finite Pr solutions were obtained from equation (23).
Since in the Pr = 1.0 solution, Z = 2Z/Pr, the two
equations are the same except for the presence of the
two transverse velocity terms in equation {23). Because
the transverse flow near a wall is always directed away
from the wall, the transverse flow tends to enhance the
heat flux entering through the heated wall and to
diminish the heat flux leaving through the unheated
wall. Therefore, the Pr = 1.0 curve is above the Pr =
« curve in Fig. 6 and below the Pr = ¢ curvein Fig. 7.
When the incoming heat flux is enhanced and the
exiting heat flux is diminished, the average fluid

Fic. 4. Local dimensionless heat flux at the inner wall. Graetz,
Case 1B, ¢ = 0.5,y = 05
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FiG. 5. Local dimensionless heat flux at the outer wall. Graetz,
Case 1B, ¢ = 0.5,y = 0.5.

temperature is enhanced and hence, in Fig. 8 the Pr =
1.0 curve is above the Pr = o curve.

The axial distributions of R’_z;ow and zv\f_::iw for
parametric values of Pr, Fig. 9, provide the somewhat

unexpected observation that all three Nu,, curves

have a relative maximum while all three Nu;,, curves
have a relative minimum. This phenomenon is a
product of eccentricity which is most pronounced in
the Graetz solution at the outer wall. The thermal
behavior of the entrance region may be visualized asa
thermal boundary layer at the inmer heated wall
expanding toward the outer wall with increasing axial
distance. Near the inlet @, and Nu,, are essentially
zero while @ is increasing from its zero inlet value.
Eccentricity enables the thermal boundary layer to
contact the outer wall closer to the inlet than would
otherwise be possible. Figure 5 shows, for example,
that for the Graetz solution at Z/Pr = 0.005, while
—{, is essentially zero over most of the outer
circumference, it is close toits fully developed tempera-
ture value near the narrowest point of the annular gap.
This non-zero portion of the —®_, curve enables a
sizable ~®_,, to occur in Fig. 7 at Z/Pr = 0.005, while
Fig. 8 shows @ at Z/Pr = 0.005 to still be rather small.
Since, as indicated by Case 1B of Table 2, Nu, is
— @, /8, arather sizable Nu_, is seen in Fig. 9 at Z/Pr

= 0.005 rather than the much smaller value of Nu,,
which would have occurred if the duct were concentric.
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Fic. 6. Average dimensionless heat flux at the inner wall. Case
1B, ¢ = 05,7y = 0S5
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F1G. 7. Average dimensionless heat flux at the outer wall. Case
1B, ¢ = 0.5,y = 05.

Since the Graetz solution has the largest values of
—&_, in Fig. 7 and the smallest values of # in Fig. 8, it

also has the largest values of Nu_, in Fig. 9.

Table 4 provides values of thermal entrance length
for the 17 thermal problems considered in [9]. The first
set of three have already been discussed as part of the
model verification and the next set of three were just
described in the discussion of Figs. 3-9. The Graetz
solution in the second set is also included in each of the
remaining two sets, which contain Graetz solutions
exclusively. The first set of Graetz solutions shows the
effect of geometry on entrance length for fundamental
solutions of the first kind with the inner wall heated.
The three y = 0.5 geometries in this set demonstrate
the dramatic increase in entrance length with increas-
ing eccentricity. The last set shows the effect of thermal
boundary condition on entrance length for the geom-
etry (e = 0.5,y = 0.5). In this set, the 1A and 1B cases
have nearly equal entrance lengths as do the 2A and 2B
cases. However, this is not true for the remaining two
pairs of solutions. In [9], contour plots of § — & for
Cases 2A and 2B show that for fully developed
temperature, while the maximum 6, 8,,,,,, occurs on the
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FiG. 8. Average dimensionless temperature. Case 1B, £ = 0.5,
y = 0.5.
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heated boundary at the narrowest part of the annular
gap, convection enables the minimum 6 to occur at a
distance from the insulated wall at the widest part of
the gap.

Shah and London [11] have compiled thermal data
in a form which is practical for use by designers of
compact heat exchangers. As indicated by the refer-
ence, data generated by the current analysis was
transmitted by private communication. Consequently,

axial distributions of Nu and § or 8,,,,, are tabulated in
[11] for many of the cases listed in Table 4. Since the
current nomenclature does not agree with that of [11],
the Appendix compares essential variables of the two

nomenclatures.

5, CONCLUSIONS

The hydrodynamic entrance region solution of [ 10]
has enabled the thermal solution for the combined
entrance region problem to be obtained. An axial
distribution of Nu_, for the eccentric geometry (¢ =
09,y = 0.1) and Pr = 1.0 compared reasonably well
with a constant wall temperature solution published
for the circular tube. Moreover, a Graetz solution for
the geometry (¢ = 0.5, y = 04) and boundary
conditions of the second kind was verified with a
published solution.

Some of the salient aspects of the solution of the
energy equation are: (1) the use of both variable axial
step sizes and variable { intervals in the finite
difference grid, {2) the use of Allen’s method in the
finite difference representation, and (3) the use of an
implicit alternating-direction method.

While 17 thermal entrance region problems were
considered, emphasis was placed on Case 1B of Table 1
for which the effects of eccentricity and Pr were studied
for the geometry (¢ = 0.5, y = 0.5). This analysis
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Table 4. Thermal entrance region problems

Geometry Fundamental Prandtl Thermal entrance
£ y solution (Case)* number length (Z/Pr)t

09 0.1 3A 1.0 0.400

0.5 04 2A o 0.675

0.7 0.3 2B 1.0 0.374

0.5 0.5 iB b'e 0.393

0.5 0.5 1B 1.0 0.356

0.5 0.5 1B 0.05 less than 0.356
0.5 0.9 1B ”* 0433

0.9 0.5 1B oL 0.575

0.5 0.5 1B % 0.393

0.1 0.5 1B Fd 0.175

0.5 0.1 IB b 0.302

0.5 0.5 1A %L 0.390

0.5 0.5 IB 9] 0.393

0.5 0.5 2A oL 1.10

0.5 0.5 2B %L 1.15

0.5 0.5 3A oL 0.785

0.5 0.5 3B e 1.46

0.5 0.5 4A * 1.31

0.5 0.5 4B Ps 0.821

* See Table 1.

t For fundamental solutions of the second kind the thermal entrance length is
arbitrarily taken to be the value of Z/Pr at which the difference between the
maximum 6 and 8 is 999 of its fully developed temperature value. For the other
three fundamental solutions the entrance length is arbitrarily taken to be the value
of Z/Pr at which  is 99% of its fully developed temperature value.

demonstrated why eccentricity can cause an axial

distribution of Nu to behave in a non-monotonic
fashion.

In conclusion, the thermal behavior of the combined
entrance region has been analyzed and a vehicle for
providing additional thermal solutions for eccentric
annuli has been provided.
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APPENDIX

Since Shah and London [11] on pp. 337-340 provide data
generated by the current analysis, a nomenclature com-

Table Al. Nomenclature comparison

Shah and London

parison is provided. While [11] uses a superscriptk = 1,2, 3, [11] Current analysis
or 4 enclosed in parentheses to indicate the fundamental
solution type and a subscript j = i or o to indicate inner or e* &
outer wall heated, the current nomenclautre generally relies Nul¥); Nu._ or Nu.
on the text. The subscript | = i or oin [11], which indicates at r* yo v
which wall the dimensionless quantity is evaluated, cor- x* Z/Pr i
responds to iw and ow, respectively, of the current nomencla- XM value of Z/Pr corresponding to the
ture. Table Al completes the comparison. thermal entrance length as defined in
footnote t of Table 4
s, ) . .
O maximum 6 at a given value of Z

UNE SOLUTION NUMERIQUE DU CHAMP DE TEMPERATURE EN DEVELOPPEMENT
POUR L'ECOULEMENT LAMINAIRE DANS DES CONDUITES ANNULAIRES
EXCENTRIQUES

Résume—L'¢quation d’énergie en coordonnées bipolaires est utilisée pour déterminer la distribution de
température dans la région d’entrée thermique d’une conduite annulaire excentrique. La solution numérique
s'appuie sur une méthode implicite a directions alternées. L’analyse de I'hydrodynamique dans la région
d’entrée, nécessaire pour la solution thermique, est obtenue selon une méthode publiée par les auteurs. Une
solution de Graetz déja publiée pour une section annulaire excentrique et une solution hydrodynamique et
thermique connue pour la région d’entrée de tubes circulaires sont utilisées pour vérifier la présente solution.
On considére ici 17 combinaisons de conditions aux limites thermiques, de nombres de Prandtl, et de
géométrie annulaire. La géométrie annulaire avec une excentricité relative et un rapport de rayons égaux a
0,5 est utilisée pour étudier les effets de I'excentricité et du nombre de Prandtl sur les distributions de
température de fluide et de flux thermique 4 la paroi.

EINE NUMERISCHE LOSUNG FUR DEN TEMPERATURVERLAUF BEI LAMINARER
ANLAUFSTROMUNG IN EXZENTRISCHEN RING KANALEN

Zusammenfassung—Die Energiegleichung in Bipolarkoordinatendarstellung wird zur Bestimmung der
Temperaturverteilung im thermischen Anlaufgebiet eines exzentrischen ringférmigen Kanals herangezogen.
Fiir die numerische Losung wird ein implizites Verfahren der alternierenden Richtungen angewandt. Die
Berechnung des hydrodynamischen Anlaufgebiets, welche die Geschwindigkeitsverteilungen liefert, die fiir
die thermische Losung bendotigt werden, wurde aus einer verdffentlichten Losung der oben genannten
Autoren gewonnen. Eine veroffentlichte Graetz-Losung fiir einen exzentrischen Ringraum und eine
verdffentlichte Losung fiir das gekoppelte thermische und hydrodynamische Anlaufgebiet fiir das Kreisrohr
werden zur Uberpriifung der vorliegenden L&sung verwendet. Diese Untersuchung behandelt 17 K ombina-
tionen von fundamentalen thermischen Randbedingungen, Prandtl-Zahlen und Ringraumgeometrien. Die
Ringraumgeometrie mit gleicher relativer Exzentrizitit und einem Radienverhiltnis von 0,5 wird zur
Untersuchung der Einfliisse der Exzentrizidt und der Prandtl-Zahl auf die Verteilungen von Fluidtempera-
tur und Oberflaichenwirmestrom verwendet.

UUCJEHHBIH PACYET UBMEHEHHSA TEMIIEPATYPHOI'O NOJIA [MPU
HEYVCTAHOBHUBIIEMCSA JTAMHWHAPHOM TEUEHHWH B DKCLHEHTPHUYECKHUX
KOJIBLUEBBIX KAHAJIAX

Annorauus — [l onpeeseHHss TEMNEPAaTYPHOIO NOJA HAa HaYaJIbHOM TEMJIOBOM YYACTKE IKCLUEHTPH-
HECKOT0 KOJIbLIEBOTO KaHAJIa HCNOJIb30BAHO YPaBHEHHE YHEPrHM B OHMONSPHBIX KOOpAMHaTax. Yucnen-
HO€ pelliCHHE BBINOJHEHO HEABHBIM METOIOM NEPEMeHHbIX HanpasieHui. Ha ocHoBe paHee npeasioxeH-
HOTO aBTOPAMH DCIIEHHA MpPOBEICH aHAIH3 THAPOAMHAMMYECKOrO HAYAJLHOTO Y4YacTKa C IEJIbIO
ONpeENICHUS NOJIs CKOPOCTeH, HeOOXOAUMOro ATA pellieHus TeroBoil 3anau. TlosyveHHble pe3yiib-
TATHl MPOBEPEHEBI ¢ NOMOUILIO M3BECTHOIO pelieHHs ['peTua ons kCHEHTPHYECKOrO KaHaia, a TAKXKe
M3BECTHOTO COBMECTHOIO PEIICHHMs [UIS TEILIOBOrO H TI'WAPOAHHAMHYECKOrO HavajbHBIX Y4YacTKOB
kpyrnao# Tpy6sl. INpoBenen ananus 17 HaboOpoB OCHOBHBIX TEILUIOBBIX MPAHHYHBIX YCJIOBMMH, 3HAYEHHH
ydcna [TpanaTns u xonbuepoit reoMeTpun kaHana. KosbueBas reOMeTpus ¢ paBHBIM OTHOCHTEJIbHBIM
3KCLEHTPHCUTETOM M OTHOLIEHHEM DaAHYyCOB, paBHbIM 0,5, HCNIONMB3yeTCs MUIS MCCICAOBAHHA BIIMAHHA
JKCLHEHTpHCHTEeTa M uHcaa [lpanaTns Ha pacnpenesieHMe TeMOepaTypbl XHAKOCTH M [UIOTHOCTH
TENJOBOro MOTOKA Ha MOBEPXHOCTH.



