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Abstract-The energy equation expressed in bipolar coordinates is used to determine the temperature 
distribution in the thermal entrance region of an eccentric annular duct. An implicit alternating-direction 
method is used in the numerical solution. The analysis of the hydrodynamic entrance region, which provides 
the velocity distributions needed for the thermal solution, was obtained from a published solution by the 
present authors. A published Graetz solution for an eccentric annulus and a published combined thermal and 
hydrodynamic entrance region solution for the circular tube are used in the verification of the present 
solution. In the present analysis 17 combinations of fundamental thermal boundary conditions, Prandtl 
number, and annular geometry are considered. The annular geometry with equal relative eccentricity and 
radius ratio of 0.5 is used to study the effects of eccentricity and Prandtl number on the fluid temperature and 

surface heat flux distributions. 

NOMENCLATURE 

location of the positive pole of the bipolar 
coordinate system [m] ; 
cross-sectional area of the duct, 7r(r& - t-f,,,) 

[m’l ; 
specific heat [J/(kg K)] ; 
hydraulic diameter, 2(r,, - ri,) [m] ; 
absolute eccentricity, or center-to-center dis- 
tance [ml; 
coordinate scale factor, defined by equation 

(9) [ml ; 
dimensionless h, h/D,, ; 
fluid thermal conductivity [W/(m K)] ; 
distance in normal direction [m] ; 
local Nusselt number, defined by equation 
(35) and Table 2; 

Nu averaged around the complete circular 
arc of a duct wall at a fixed 2, defined by 
equations (38) and (39); 

Nu averaged over the entire surface area of a 
wall from the inlet to a fixed 2, defined by 
equation (40); 
Prandtl number, PC/k, ; 
local heat flux [W/m’] ; 
volume rate of flow, AW [m3/s]; 

radius [m] ; 
Reynolds number, pGD Jp; 
time [s] ; 
local temperature [K] ; 

T, mixed-mean average temperature, defined 
by equation (30) [K] ; 

4 ( component of velocity [m/s] ; 
u, dimensionless u, puD,/p ; 
0, q component of velocity [m/s] ; 
V, dimensionless v, pvD Jp; 
W, axial component of velocity [m/s] ; 
W, average w (volume rate of flow per unit area) 

[m/s1 ; 
W, dimensionless w, W/W; 

&V, Cartesian coordinates in the transverse plane 

[ml ; 

;, 
axial coordinate [m] ; 
dimensionless z, (z - z,)/(D,Re). 

Greek symbols 

Q, 
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radius ratio, riw/row ; 
dimensionless axial step size; 
relative eccentricity, e/(r,, - riw); 

bipolar coordinates in the annular cross- 
section ; 
dimensionless T, defined by Table 1; 
dimensionless T, defined by equation (32); 
coefficient of viscosity [Pa.s] ; 
density [kg/m31 ; 
dimensionless q”, defined by equations (21) 
and (22); 
@ averaged around the complete circular arc - 
of a duct wall at a fixed Z, analogous to Nu of 
equations (38) and (39); 
circumferential arc length measured along 
either wall (a value of 0” corresponds to the 
widest point of the annular gap and a value of 
180” corresponds to the narrowest point). 
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Subscripts 

e, 
ij, 

iw, 

ow, 
max, 

entrance (inlet to the duct); 
indices which together denote points of the 
finite difference grid (i corresponds to 5 andj 

to a); 
inner wall ; 
outer wall ; 
maximum. 

1. INTRODUCTION 

WHEN A confined flow with fully developed velocity 
and temperature profiles experiences a step change in 
thermal boundary condition, the resultant thermal 
entry region problem is known as the Graetz problem. 
Hatton and Quarmby [l] and Lundberg et al. [2] 
analyzed the laminar flow Graetz problem for con- 
centric annuli. Vilenskii et a[. [3] consider only heat 
flux boundary conditions in their numerical solution 
of the Graetz problem for laminar flow in eccentric 
annuli. Cheng and Hwang [4] and Trombetta [S] 
obtained infinite series approximations for the fully 
developed temperature distributions for laminar flow 
in eccentric annuli. 

When heat transfer from the walls of a duct begins at 
the inlet to the duct, both velocity and temperature 
profiles develop simultaneously. Murakawa [6] and 
Heaton et al. [7] analyzed this combined thermal and 
hydrodynamic entrance region problem for laminar 
flow in concentric annuli. Shumway and McEligot [S] 
numerically solved both the Graetz problem and the 
combined entrance region problem for laminar flow 
with variable properties in concentric annuli. 

The basis for the present analysis is Feldman [9] 
. ..LZ..l. -__.I~__ AL_ __1.. I.-_...- _-,..r:__ ._ .l_ --- wmcu p)I”vIUCb Lilt: “my KIl”Wll b”LllLl”ll L” UK c”111- 
bined entrance region problem for laminar flow in 
eccentric annuli. Feldman et al. [lo] provides the 
hydrodynamic entrance region solution which is used 
in the present solution of the thermal entrance region. 

2. MATHEMATICAL MODEL 

The fluid is assumed to be incompressible, laminar, 
Y.l~p,.it~n;,,n mn,i tn hn.,e ,.r\nr+ont nt,xwwt;nc Qnrlw 1 .cw L”IIIcLII) Ull” L” Lla*c G”llDLcLllL ~L”puLL~J. ““UJ 

forces, viscous generation of heat and axial heat 
conduction are neglected. Since the steepest axial 
temperature gradients generally occur at the inlet, the 
error introduced by excluding axial conduction is 
expected to decrease with increasing distance from the 
inlet. Moreover, accurate results can not be expected if 
the Peclet number (product of Reynolds number and 
Prandtl number) is less than 50. Some of the many 
investigations concerning axial heat conduction in 
laminar duct flow are discussed in [ll]. Thus only 
forced convection is analyzed and the governing 
energy equation in vector form is 

DT k, 
_ z -_VZT 
Dt pc 

where t is time, p is density, k, is thermal conductivity, 
T is temperature, and c is specific heat. 

The bipolar coordinates used in [lo] in the repre- 

sentation of the hydrodynamic mode1 are also used in 
the representation of the energy equation, equation (1). 
The bipolar coordinates ([J) are related to the 
Cartesian coordina!es (XJ) by !he fo!!owing two 
equations. 

(2) 

~-cotvy+(g = csc*q for 0 5 n 5 27t (3) 

Figure 1 shows curves of constant < and constant n 
plotted as functions of x and I’. 

The geometry of any eccentric annulus can be 
characterized by the radius ratio, y, and the relative 
eccentricity, F, which are given by 

Y=r,, (4) 
r ow 

where the subscripts iw and ow correspond to the inner 
and outer wall of the annulus, respectively, r is the wall 
radius, and e is the absolute eccentricity, or center-to- 
center distance, of the annulus. As explained in [lo] 

cash i,, = 
y(l - c3) + (1 + i?) 

2r: (6) 

cash ii, = 
y(1 + sZ) + (1 - &2) 

2v 
(7) 

These two equations and planar symmetry confine the 
region of interest to (i,, 5 < < &,, 0 5 9 2 K). 

Th_e opnpral nrthnonnal r~~rvilin~ar rnnrrlinatp PY_ D-A’---- .,. . . . ..-....... .,-. . . . . . . _.&. v.,Y.-..IY.I _‘. 

pressions for the vector operations of equation (1) 
along with the necessary bipolar coordinate scale 
factors can be found in [12]. In the bipolar coordinate 
representation of equation (I), the second derivative of 
temperature with respect to the axial coordinate, z, is 
not included because axial heat condition is assumed 
to be negligible. Hence the energy equation may be 
written as 

where u, u and w respectively are the c, q and z 
components of fluid velocity, h is a bipolar coordinate 

06 

x/o 0 6 

04 

02 

n 
"0 04 08 12 16 20 24 

Y/O 

FIG. 1. Bipolar coordinate curves for the region (1.0 2 i s 
2.0, 0 < fj < 7x). 
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Table 1. Dimensionless temperature and boundary conditions 

Fundamental 
solution Case 

Dimensionless 
temperature* 

Boundary conditions 
Outer wall Inner wall 

i 

1A 
T-T, 

(g----.- B=l e=o 
T “W -T, 

First kind 
18 

T-T, 

*=jYT 
8=0 8=1 

IW e 

Second kind 

Third kind 
3A 

T - T, 
@S-.----- 

I-,--T, 

3B 
T-T, 

e=7:-T IV! e 

O=l u$.+/ = 0 

(o,, = 0 %=I 

Fourth kind 

k 
@= -u- - r,) @“, = 1 e=o 

q:+j & 

48 s=$+ r,) O=O qW = 1 
“Iv h 

*The subscriots e, ow. and iw refer to the entrance to the duct, the outer surface and inner 
surface, respec&ely: 

scale factor, given by 

h=- a 
cash i - cos q 

(9) 

and a is the location of the pole (see Fig. 1). 
Before equation (8) can be solved, thermal bound- 

ary conditions must be specified. Although any com- 
bination of temperature and heat flux distributions 
may be imposed at the walls, in order to produce 
results of general utility, we will assume that at each 
wall of the duct either the temperature or the heat flux 
is uniform. Because the energy equation is homo- 
geneous and linear in temperature, tem~rature so- 
lutions may be superimposed. Reynolds ef al. [13] 
have taken the principle of superposition into con- 
sideration in defining four fundamental solutions 
corresponding to four pairs of thermal boundary 
conditions. For each solution, the inlet temperature 
distribution is uniform. The four fundamenta1 kinds of 
solutions have the following boundary conditions: 

First kind-one wall is at the constant temperature 
of the entering fluid, while the other is at a different 
constant temperature; 

Second kind-one wall has a uniform heat flux, 
while the other is insulated; 

Third kind-one wall is at a constant temperature 
different from the inlet temperature, while the other 
wall is insulated ; 

Fourth kind-one wall has a uniform heat flux, 
while the other is at the inlet temperature; 

The heat fiux, q”, at either wail according to 
Fourier’s law. is 

q’( = - k, f$ 

where n is the direction normal to the wall and the 
direction of positive q". The required temperature 
gradient in bipolar coordinates is 

aT 1 3T -=_ _. 
an h ai 

It is convenient to define q" to be positive when it 
causes heat to flow into the fluid. Thus, the heat flux 
into the fluid at the inner wall wiil be in the negative [ 
direction and the two wall heat fluxes are 

(12) 

3. METHOD OF SOLUTION 

Equation (8) and the boundary conditions are 
expressed in dimensionless form with u, v, w, z and h, 
respectively, represented by 

PVD, v=-, 
P 

W2 
I’ 

z - z, 
z=-, 

D,Re 

(15) 

(16) 

(17) 
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H =$, (18) 

where p is the coefficient of viscosity, ti is the average 

axial velocity, i.e. volumetric flow divided by the cross- 
sectional area, z, is the value of z corresponding to the 
duct inlet, and D, and Re are the hydraulic diameter 
and the Reynolds number respectively given by 

D, = 2(r,, - ri,,,) = 2a( 1 - y) csch i,,, (19) 

PWI RE=-. (20) 
P 

Table 1 provides the definition of dimensionless 
temperature, 0, and the boundary conditions for each 
of the four fundamental solutions. In accord with 
equations (12) and (13) the dimensionless heat flux at 
the outer and inner walls are: 

(22) 

In all cases listed in Table 1, 0 equals 0 at the inlet, and 
8 or @ equals 1.0 at the heated wall and 0 at the 
unheated wall. 

The dimensionless form of equation (8) is 

Pr(i g+; ~+w~)=~(~+~) 
(23) 

where Pr is the Prandtl number and is given by 

ki 

By combining equations (9) (18) and (19) one can 
express the dimensionless scale factor, H, as 

H= 
0.5 sinh i,, 

(1 - y)(cosh< - cosnj 
(25) 

A finite difference solution for equation (23) is ob- 

tained from a numerical marching technique in which 

the thermal entrance region is sectioned into a series 
of parallel planes perpendicular to the Z axis. The 
thermal solution at the first plane beyond the inlet is 

obtained independently of all succeeding planes. The 
solution for the second plane depends only upon that 
for the first and, similarly, the solution for the k + 1 
plane depends only upon that for its immediate 
predecessor, the k plane. Thus, the entire thermal 
entrance region is solved by solving one plane at a time 
in succession. 

At the planes where the q derivatives are expressed 
implicitly, the algebraic equations corresponding to 
points along a curve of constant rl are independent of 
those for all other values of 9. The analogous situation 
prevails at the planes where the [ derivatives are 
expressed implicitly. This method is advantageous 
because it is much easier to solve a series of inde- 
pendent groups of simultaneous equations than it is to 
solve the same total number of equations as one 
simultaneous set. Since each independent group of 
simultaneous equations can be represented by a 
tridiagonal matrix, a simple direct method of solution 
(see [14]) can be used. 

In each plane, the region (i,, I < < iiw, 0 I u 5 n) The finite difference approximations of the [, rl and 

is sectioned by sets of constant [ curves (with index i) Z derivatives of equation (23) are analogous to their 

and constant n curves (with index j) to form a finite counterparts used by [lo] for the momentum 
difference grid covering half of the symmetric annular equation. The axial derivative in the k + 1 plane is a 

cross-section. This grid is the same one used by [lo] to simple lst-order backward difference involving values 

solve the hydrodynamic model and obtain values of U, of 0 in both the k + 1 and k planes. The two n 

V, and W at each grid point of each Z plane. While the 
grid has 24 equal q intervals, the 32 [ intervals are 
generally unequal with very fine intervals near the two 
walls where large velocity and temperature gradients 
occur. Hence. there are 775, i.e. (32 - 1). (24 + l), 
interior grid points for which values of Bij are required 
and 25 points on each < boundary for which Oi.j is 
governed by the boundary conditions given in Table 1. 

At each Z plane the values of Ui,j, Vi,j and Wi,j were 
obtained for each of the 775 interior points from the 
hydrodynamic solution presented by [lo] and are used 
in the numerical approximation to equation (23), 
which is represented at each of these 775 grid points. 
The values of 0 beyond 0 5 rl I rr which are needed for 
the rl derivatives at ye = 0 and rl = K are obtained 

from symmetry conditions at these two values of n. At 
each set of 25 points along [ = [,, and [ = ii,, 

the boundary conditions provided in Table 1 are repre- 

sented. For the constant temperature boundary con- 
ditions, this representation is either Q = 0 or 0 = 1.0, 
and for the constant heat flux boundary conditions, 

the numerical approximation to %/a[ is set equal to 
+ H or to - H. Hence, in all cases at each Z plane there 
are 825 equations and an equal number of unknown 
values of 0. . . 

An implilit alternating-direction method [14] was 
used in the numerical solution of the energy equation. 
This solution method uncouples the groups of alge- 
braic equations which result from the finite difference 
representation of equation (23). In the solution at the 
first plane beyond the inlet, the q derivatives are 
implicitly represented by unknown values of Oi,j in the 

solution plane, while the [ derivatives are evaluated 
with the known uniform B = 0 temperature distri- 
bution at the inlet. In the solution at the second plane 
beyond the inlet, the alternate arrangement is used 
with the < derivatives implicitly represented in the 
solution plane while the 4 derivatives are evaluated 
with known Bi,j values of the first plane. This alternat- 
ing two-step cycle is repeated until the entire thermal 

entrance region has been solved. 
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derivatives were grouped together and approximated 
by a finite difference approximation provided by Allen 
[15]. Similarly, the two J derivatives were grouped 
together and approximated by the extension of Allen’s 
method provided by [lo] for unequally spaced grids. 
When the first derivative is not present, Allen’s method 
produces the familiar central-difference representation 
of the second derivative, which can be obtained from a 
Znd-order Taylor series approximation. 

The heat flux boundary conditions require that 
#/ail be approximated at i,, and ii,,,. Since all of the [ 
intervals in the finite difference grid occur in pairs of 
equal size, a Znd-order Taylor series approximation 
for equally spaced grids can be used. Hence, at the 
outer wall where <,,,, corresponds to the grid index 
i = 1, 

i,j x - 

3tI,J - 482, + t& 

2Ai, ’ 
(26) 

and at the inner wall where ii, corresponds to i = 

N + 1, 

30 
Z 

N+i.j -46,~~ + ON-1.j (27) 

N+l.j 2A1, ’ 

where A[, and AiN are the sizes of the first and last [ 
interval, respectively. 

In the Graetz problem, the velocity profile is fully 
developed and only the temperature profile is develop- 
ing. Hence, for this problem, equation (23) can be 
reduced to 

ae a% a28 
H’yg!=ii;z+q (28) 

where 

z’ = ZlPr. (29) 

In equation (28) W corresponds to the fully developed 
flow solution and Pr does not appear. 

The average mixed-mean temperature, ;i; at any 
axial plane for constant density is defined as 

r 

intervals are in pairs of equal size, the double-integral 
in equation (32) is approximated with the aid of 
Simpson’s l/3 rule. 

Since, for boundary conditions of the second kind, 
the heat flux at each wall is specified, g can be directly 
calculated from energy considerations. Hence, in this 
special case 

where the subscripts 2A and 2B correspond to Cases 
2A and 2B of Table 1. 

The local Nusselt number, Nu, which at either wall 
can vary both circumferentially as well as axially, is 
defined as 

Nu=!!fi 
i 

where the film coefficient, h,, is given by 

h, = _Y!k- 
T,-- i-’ 

(35) 

and T, is the local temperature at the wall and 41: is qzw 
or q1:, as given by either equation (12) or (13). 
Equations (35) and (36) yield 

Nu=D, 4:: 
k, m’ 

The definitions of 0 given in Table 1 and equations 
(12), (13), (21), (22), and (37) yield the Nu relationships 
given in Table 2. 

Table 2. Local Nusselt number 

Fundamental 
solution Case* Outer wall Inner wall 

J Tw dA 

T’=A 
Q ' 

(30) 
First kind 

where A is the flow area and Q is the volumetric flow 
rate. By definition, Q is the product of A and the 
average axial velocity, W. When equation (30) is 
expressed in bipolar coordinates, the result can be 
written as 

Second kind 

T’= 
2 = I,, 

Is 7r(r& - riz,)W D I Tw’didrl, (31) 
ior Third kind 

or in dimensionless form as 

0 wH’ d{ dq, (32) 
Fourth kind 

where g, the dimensionless average temperature, cor- 
responds to 6’ in Table 1 when Freplaces r Since there 
are an even number of equal r~ intervals and all of the [ *See Table 1. 

@ 
1A ow @i, -- 

l-8 B 

tB -$ & 
l-8 

1 

2A 

2B e-8 0 1 0 1 

e-8 

1 3A 3B -.!Y Q, 0 
l-8 

% 0 

l-8 

1 
4A __ @iw -- 

e-8 B 
4B -- mow 1 

B e-8 
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At any given axial location the Nusselt number 
distribution around either wail may be integrated from 
q = 0 to q = x and then divided by the included arc 
length to obtain the circumferentially averaged Nus- 

selt number, z. For the outer and inner walls, - 
respectively, the two Nu relationships, expressed in 
bipolar coordinates, are 

2(1 - y) #-= 
NEI, = ~ 

? 
(Nu H), d% (38) 

II 0 

- 2(1 - 7) 
Nu,, = ~ (Nu H)i, drl. (39) 

n), 

In the analysis, the above two integrals are approxi- 
mated with the aid of Simpson’s l/3 rule. 

A local Nusselt number distribution can also be 
integrated over the wall surface area from Z = 0 to Z 
= Z. When this result is divided by the wall surface _ 
area, a surface-averaged Nusselt number, Nu, is ob- 
tained. This quantity can also be obtained by integrat- - 
ing Nu from 2 = 0 to Z = 2 and dividing the result by 
2. Hence, for either wall 

z-_-i 
J’ 

Z- 
Nu dZ. (40) 

0 

The integrai in this equation is numericaify approxi- 
mated by 

where AZ is the size of the last axial step taken to 
reach Z. 

Because the finite difference solution employs 
numerical approximations whose truncation errors 
approach zero as the axial step sizes approach zero, 
some initial experimentation was necessary to ensure 
that sufficiently small step sizes were chosen. Ex- 
tremely small values of AZ are used near the duct inlet 
where steep axial gradients of temperature and flow 
occur. In some of the hydrodynamic solutions of [ lo], 
a AZ of 0.25 x lo-” at the duct inlet was gradually 
increased to 0.001. Although these step sizes are quite 
adequate for the hydrodynamic solution, they cause a 
local oscillation in the temperature solutions. In some 
instances this numerical instability was extremely 
severe. Empirically obtained stability criteria, used by 
Torrance [I61 in the numerical solution of 2-dim. 
transient natural convection in an enclosure, suggested 
the following criterion on AZ: 

AZ s min (42) 

where the minimum is taken over all interior grid 
points, and Ai and Aq are the local interval sizes of the 
finite difference grid. Although the above criterion 
eliminated the numerical instability, the indicated AZ 
is of the order of 10m9. Fortunately, the need for an 
excessively large number of axial steps was avoided 

since stable thermal solutions were obtained by grad- 
ually increasing the IO-” inlet value of AZ to 0.001 as 
Z increased. 

Fully developed temperature distributions were 
obtained by solving the Graetz problem for a 
sufficiently large Z/Pr. A typical Graetz solution 
required 2100 axial steps (1050 two-step cycles) to 
obtain a thermal solution at Z/Pr = 1.56. This 
solution required about 4% minutes of computing time 
on the Univac 1108 computer at the Carnegie-Mellon 
University Computation Center. Additional details 
concerning the Graetz and combined entrance region 
solutions, along with the FORTRAN IV computer 
programs used to generate them, can be found in [9]. 

4. RESULTS 

The present solution for developing flow with Pr = 
1.0 is compared with that of Hornbeck [17] for the 
circular tube. Although for all values of c the annular 
geometry approaches that of the tube as y approaches 
zero, the highly eccentric geometry (l: = 0.9,~ = 0.1) 
was chosen in order to produce a severe test of both the 
present thermal model and the hydrodynamic model 
of [lo]. Contrary to the assumptions used in a similar 
comparison presented in [9], in this paper the dimen- 
sionless variables of the tube and the annulus are 
defined in an analogous manner, with the hydraulic 
diameter for the tube being its diameter and the 
hydraulic diameter of the annulus being given by 
equation (19). The wall of the tube and the outer wall of 
the annulus are of uniform temperature, while the 
inner wall of the annulus is insulated (see Case 3A of 
Table 1). The data in Fig. 2 for the tube was obtained 
by interpolation between Hornbeck’s Nusselt number 
curves for Pr = 0.7 and Pr = 2.0. The data in the figure 

for the annulus is Fi as defined by equation (38). 
As another means of verification, the present model 

was used to obtain the fundamental Graetz solution of 
the second kind with the outer wal1 heated for the 
geometry (F = 0.5, >* = 0.4). The resultant surface 
temperature distributions at the outer and inner walls, 
which can be found in Figs. 6.9 and 6.10, respectively, 
of [9], agree with the graphical data of [3]. 

For fundamental solutions of the second kind, @ 
obtained from the numerical approximation of 
equation (32) can be verified with the exact t? given by 

::A’“‘“’ ’ I”““’ 1$ - THIS WORK 

FIG. 2. Nusseit number ~mparison for Pr = 1.0. This work 
(E = 0.9, g = 0.1) vs the cir;‘;;r tube solution of Hombeck 
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either equation (33) or (34). Close agreement between 
numerically calculated and exact values of 0 was 
obtained in Graetz solutions for both the outer wall 
heated case and the inner wall heated case. Additional 
verification of the present thermal model and the 
hydrodynamic model of [lo] was obtained by 
performing this g comparison for Pr = 1.0. A 
fundamental solution of the second kind with the inner 
wall heated was obtained for the geometry (c = 0.7, 
y = 0.3). Table 3, which characterizes the thermal 
entrance region for this case, provides a comparison 
between gof equation (32) and 8,, of equation (34). At 
small values of Z/Pr, such as 0.01, small differences 
between small values of B and gXB produce large 
fractional errors. At higher values of Z/Pr, however, 
only very small fractional errors are observed. For 
example, at Z/Pr = 0.1 and 1 .O the fractional errors of 
g of equation (32) are only 0.69% and -0.13x, 
respectively. 

The effects of eccentricity and the influence of 
Prandtl number were studied for the geometry (E = 
0.5, y = 0.5). Since [3] has already solved the Graetz 
problem with heat flux boundary conditions, tempera- 
ture boundary conditions given by Case 1B of Table 1 
were chosen for the present study. The Graetz prob- 
lem, Pr = 1.0, and Pr = 0.05 are considered. 

The Prandtl number determines the relative sizes of 
the thermal and hydrodynamic entrance lengths. For 
Pr = 1.0, both entrance lengths are of the same order 
of magnitude. As Pr + x8, the thermal entrance length 
becomes much larger than the hydrodynamic one, and 
the Graetz problem is approached. The effect of very 

small values of Pr can best be understood by referring 
to equation (23). A very small Pr generally causes 
the left-hand side to be very small except at small values 
of Z where the quantity in the first set of parentheses is 
large. Hence, beyond these small values of Z, 0 is 
fully developed while the flow is not. Because the Peclet 
number, i.e. Re Pr, must be at least 50 to preclude 
significant axial condition ofheat, the value Pr = 0.05, 
which corresponds to liquid metals, was arbitrarily 
chosen as being representative of the minimum Pr for 
which the present analysis can be expected to produce 
accurate solutions. 

The Graetz temperature and wall heat flux distri- 
butions of Figs. 3-5 dramatize the effects of eccen- 
tricity. While Fig. 3 shows the 0 distribution across the 
duct at the narrowest and widest points of the annular 
gap, Figs. 4 and 5 respectively show the distribution of 
miw at the heated boundary and the distribution of@,, 
at the unheated boundary. The arc length, Q in the 
figures, is measured along either surface from the 
widest point of the annular gap to the narrowest. All 
three figures show that the narrowest point reaches 
fully developed thermal conditions much closer to the 
inlet than does the widest. Figures 4 and 5 show that 
for Z/Pr = cx: the largest heat flux occurs at the 
narrowest point. This is as expected because when the 
temperature is fully developed all of the heat transfer is 
by conduction across the fluid from the inner wall to 
the outer. Figure 4 also shows that near the inlet the 
largest heat flux along the heated wall is at the widest 
point rather than at the narrowest. This occurs 
because convective heat transfer is very important near 

Table 3. Fundamental solution of the second kind, inner wall heated, E = 0.7, y 
= 0.3, Pr = 1.0 

o.oooo1 O.OOQOO9 o.OoOO14 0.01472 131.6 252.1 
o.oooo2 0.000018 0.000029 0.02212 93.09 178.5 
O.OOQO6 O.OCKlO55 o.OOoO91 0.03736 56.14 103.9 
0.0001 o.c0OO92 0.000155 0.04774 44.46 81.07 
0.002 0.000185 0.000313 0.06597 32.96 58.83 

0.0006 0.000554 0.000927 0.09932 21.40 
0.001 O.OOG923 0.001520 0.1196 18.00 
0.002 0.001846 0.002952 0.1490 14.85 
0.006 0.005538 0.008040 0.1879 10.20 
0.01 0.009231 0.01245 0.1991 7.859 

0.02 0.01846 0.02225 
0.05 0.04615 0.04888 
0.1 0.09231 
0.2 0.1846 
0.374 0.3452 

0.5 0.4615 
1.0 0.9231 
1.544 1.425 

* See equation (34). 
t See equation (32). 
$ Maximum 0 in Z plane. 

0.09295 
0.1836 
0.3439 

0.4603 
0.9219 
1.424 

0.2791 5.594 
0.4830 3.963 
0.6183 3.267 
0.7094 2.841 
0.7452 

0.7505 2.647 3.221 
0.7524 2.637 2.930 
0.7528 2.637 2.827 

36.02 
29.09 
22.46 
15.33 
12.54 

9.410 
6.471 
5.003 
4.004 

0 See Table 2 and equation (39). 
1 See equation (40). 
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OUTEA CYLINDER 

IO 08 04 0 04 08 IO 

RADIAL LOCAllON 

FIG. 3. Local dimensionless tem~rature in the plane of 
symmetry. Graetz, Case 18, i: = 0.5, y = 0.5. 

the inlet and the fully developed flow velocities are 
largest at the widest point. This heat flux trend wasnot 
observed near the inlet in the Pr = 1.0 solution 

because in the developing flow solution the inlet 
velocity profile is uniform. 

Figures 6 and 7 provide the axial distributions of@iw 
and cTj=which are defined in an analogous manner to 
their Nu counterparts of equations (39) and (38), 
respectively. In the Pr = 0.05 analysis, the temperature 
solution became numerically unstable at ZjPr = 
0.074. Hence, beyond that point all Pr = 0.05 curves 
are approximated with a dashed line. The Pr = cc 
solution was obtained from equation (28) while the 
finite Pr solutions were obtained from equation (23). 
Since in the Pr = 1.0 solution, Z = ZjPr, the two 
equations are the same except for the presence of the 
two transverse velocity terms in equation (23). Because 
the transverse flow near a wall is always directed away 
from the wall, the transverse flow tends to enhance the 
heat flux entering through the heated wall and to 
diminish the heat flux leaving through the unheated 
wall. Therefore, the Pr = 1.0 curve is above the Pr = 
x curve in Fig. 6 and below the Pr = x: curve in Fig. 7. 
When the incoming heat flux is enhanced and the 
exiting heat flux is diminished, the average fluid 

FIG. 4. Local dimensionless heat flux at the inner wall. Graetz, FIG. 6. Average dimensioniess heat flux at the inner wall. Case 
Case: iB, 8: = 0.5, y = 0.5. iB, E = OS, y = 0.5. 

R ox 

FIG. 5. Local dimensionless heat flux at the outer wall. Graetz, 
Case lB, I: = 0.5, y = 0.5. 

temperature is enhanced and hence, in Fig. 8 the Pr = 
1.0 curve is above the Pr = z curve. - 

The axial distributions of Nu, and Gi, for 
parametric values of Pr, Fig. 9, provide the somewhat - 
unexpected observation that all three Nu,, curves - 
have a relative maximum while all three Nui, curves 
have a relative minimum. This phenomenon is a 
product of eccentricity which is most pronounced in 
the Graetz solution at the outer wall. The thermal 
behavior of the entrance region may be visualized as a 
thermal boundary layer at the inner heated wall 
expanding toward the outer wall with increasing axial 
distance. Near the inlet a,, and Nu,~ are essentially 
zero while B is increasing from its zero inlet value. 
Eccentricity enables the thermal boundary layer to 
contact the outer wall closer to the inlet than would 
otherwise be possible. Figure 5 shows, for example, 
that for the Graetz solution at Z/Pr = 0.005, while 
-cb,, is essentially zero over most of the outer 
circumference, it is close to its fully developed tempera- 
ture value near the narrowest point of the annular gap. 
This non-zero portion of the -Qp,, curve enables a 
sizable - @., to occur in Fig. 7 at ZJ Pr = 0.005, while 
Fig. 8 shows 0 at Z/Pr = 0.005 to still be rather small. - 
Since, as indicated by Case 1B of Table 2, Nu,, is - 
-ai,/@, a rather sizabie Nu, is seen in Fig. 9 at Z/Pr 

= 0.005 rather than the much smaller value of Nu, 
which would have occurred if the duct were concentric. 
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FIG. 7. Average dimensionless heat flux at the outer wall. Case 
lB, i; = 0.5, y = 0.5. 

Since the Graetz solution has the largest values of 
- 6j,, in Fig. 7 and the smallest values of @in Fig. 8, it - 
also has the largest values of Nu, in Fig. 9. 

Table 4 provides values of thermal entrance length 
for the 17 thermal problemsconsidered itl[9]. The first 
set of three have already been discussed as part of the 
model verification and the next set of three were just 
described in the discussion of Figs. 3-9. The Graetz 
solution in the second set is also included in each of the 
remaining two sets, which contain Graetz solutions 
exclusively. The first set of Graetz solutions shows the 
effect of geometry on entrance length for fundamental 
solutions of the first kind with the inner wall heated. 
The three y = 0.5 geometries in this set demonstrate 
the dramatic increase in entrance length with increas- 
ing eccentricity. The last set shows the effect of thermal 
boundary condition on entrance length for the geom- 
etry (E = 0.5, y = 0.5). In this set, the 1A and 1B cases 
have nearly equal entrance lengths as do the 2A and 2B 
cases. However, this is not true for the remaining two 
pairs of solutions. In [9], contour plots of 8 - B for 
Cases 2A and 2B show that for fully developed 
temperature, while the maximum 0,0,,,, occurs on the 

i 

, 

Pr:O.O5 

10.' 

e ~~ Pr=lO 

FIG. 8. Average dimensionless temperature. Case lB, E = 0.5, 
y = 0.5. 

Z/R 

FE. 9. Average Nusselt number. Case lB, c = 0.5, y = 0.5. 

heated boundary at the narrowest part of the annular 
gap, convection enables the minimum 0 to occur at a 
distance from the insulated wall at the widest part of 
the gap. 

Shah and London [ 1 l] have compiled thermal data 
in a form which is practical for use by designers of 
compact heat exchangers. As indicated by the refer- 
ence, data generated by the current analysis was 
transmitted by private communication. Consequently, - 
axial distributions of Nu and @or f?,,, are tabulated in 
[ 111 for many of the cases listed in Table 4. Since the 
current nomenclature does not agree with that of [ 111, 
the Appendix compares essential variables of the two 
nomenclatures. 

5. CONCLUSlOKS 

The hydrodynamic entrance region solution of [lOI 
has enabled the thermal solution for the combined 
entrance region problem to be obtained. An axial - 
distribution of Nu, for the eccentric geometry (E = 
0.9, y = 0.1 f and Pr = 1.0 compared reasonably well 
with a constant wall tem~rature solution published 
for the circular tube. Moreover, a Graetz solution for 
the geometry (c: = 0.5, y = 0.4) and boundary 
conditions of the second kind was verified with a 
published solution. 

Some of the salient aspects of the solution of the 
energy equation are : (I ) the use of both variable axial 
step sizes and variable c intervals in the finite 
difference grid, (2) the use of Allen’s method in the 
finite difference representation, and (3) the use of an 
implicit alternating-direction method. 

While 17 thermal entrance region problems were 
considered, emphasis was placed on Case 1 B of Table 1 
for which the effects of eccentricity and Pr were studied 
for the geometry (c = 0.5, y = 0.5). This analysis 
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Geometry Fundamental 
8 Y solution (Case)* 

0.9 0.1 3A 
0.5 0.4 ZA 
0.7 0.3 2B 

Prandtl 
number 

1.0 

1% 

Thermal entrance 
length (Z/Pr)t 

0.400 
0.675 
0.374 

0.5 0.5 1B 
0.5 0.5 1B 
0.5 0.5 1B 

1: 
0.05 

0.393 
0.356 

less than 0.356 

0.5 0.9 
0.9 0.5 
0.5 0.5 
0.1 0.5 
0.5 0.1 

1B % 0.433 
1B z 0.575 
1B % 0.393 
1B % 0.175 
1B -X_ 0.302 

0.5 0.5 1A 7, 0.390 
0.5 0.5 1B 7J 0.393 
0.5 0.5 2A z 1.10 
0.5 0.5 2B % 1.15 
0.5 0.5 3A ‘X 0.785 
0.5 0.5 3B x 1.46 
0.5 0.5 4A x 1.31 
0.5 0.5 4B % 0.821 

* See Table 1. 
t For fundamental solutions of the second kind the thermal entrance length is 

arbitrarily taken to be the value of Z/Pr at which the difference between the 
maximum 0 and 0 is 99% of its fully developed temperature value. For the other 
three fundamental solutions the entrance length is arbitrarily taken to be the value 
of Z/Pr at which g is 999<, of its fully developed temperature value. 

Table 4. Thermal entrance region problems 

demonstrated why eccentricity can cause an axial - 
distribution of Nu to behave in a non-monotonic 

fashion. 
In conclusion, the thermal behavior of the combined 

entrance region has been analyzed and a vehicle for 
providing additional thermal solutions for eccentric 
annuli has been provided. 

1. 

2. 

3. 

4. 

5 

6. 

7 

REFERENCES 

A. P. Hatton and A. Quarmby, Heat transfer in the 
thermal entry length with laminar flow in an annulus, Int. 
J. Heat Mass Transfer 5, 973-980 (1962). 
R. E. Lundberg, P. A. McCuen and W. C. Reynolds, Heat 
transfer in annular passages. Hydrodynamically deve- 
loped laminar flow with arbitrarily prescribed tempera- 
tures or heat fluxes, Int. J. Heat Mass Transfer 6, 
495-529 (1963). 
V. D. Vilenskii, Y. V. Mironov and V. P. Smimov, 
Numerical solution of the problem of heat transfer in an 
annular channel, High Temperature 9, 699-704 (1971). 
K. C. Cheng and Guang-jyh Hwang, Laminar forced 
convection in eccentric annuli, A.1.Ch.E. JI 14, 510-512 
(1968). 
M. L. Trombetta, Laminar forced convection in eccentric 
annuli,Int. J. Heat Mass Transfer 14,1161-1173 (1971). 
Katsuhisa Murakawa, Heat transfer in entry length of 
double pipes, Int. J. Heat Mass Transfer 2, 240-251 
(1961). 
H. S. Heaton, W. C. Reynolds and W. M. Kays, Heat 
transfer in annular passages. Simultaneous development 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

of velocity and temperature fields in laminar flow, Int. J. 
Heut Muss Trtmsfer 7, 763-781 (1964). 
R. W. Shumway and D. M. McEligot, Heated laminar gas 
Row in annuli with temperature-dependent transport 
properties, NIX/. Sci. Engng 46, 394-407 (1971). 
E. E. Feldman, The numerical solution of the combined 
thermal and hydrodynamic entrance region of an eccen- 
tric annular duct. Ph.D. thesis, Carnegie-Mellon Uni- 
versity, Pittsburgh, PA (1974). 
E. E. Feldman, R. W. Hornbeck, and J. F. Osterle, A 
numerical solution of laminar developing flow in eccen- 
tric annular ducts. Int. J. Heat Mass Transfir 25, 
231-241 (1982). 
R. K. Shah and A. L. London, Lominar Flow Foweti 
Conoection in Ducts. Academic Press, New York (1978). 
W. F. Hughes and E. W. Gaylord, &sic Equtions oj 
Engineering Science. Schaum, New York (1964). 
W. C. Reynolds, R. E. Lundberg and P. A. McCuen, Heat 
transfer in annular passages. General formulation of the 
problem for arbitrarily prescribed wall temperatures or 
heat fluxes, Int. J. Heut Mass Trmsfer 6,483-493 (1963). 
Brice Carnahan, H. A. Luther and J. 0. Wilkes, Applied 
Numerical Methods. John Wiley, New York (1969). 
D. N. de G. Allen and R. V. Southwell, Relaxation 
methods applied to determine the motion, in two dimen- 
sions, of a viscous fluid past a fixed cylinder, Q. J. Mech. 
appl. Math. 8, 129-145 (1955). 
K. E. Torrance, Comparison of finite-difference com- 
putations of natural convection, J. Res. 72B, 281-301 
(1968). 
R. W. Hombeck, An all-numerical method for heat 
transfer in the inlet of a tube, ASME 65-WA/HT-36 
(1965). 



Developing temperature for laminar developing flow 253 

APPENDIX Table Al. Nomenclature comparison 

Since Shah and London [l l] on pp. 337-340 provide data 
generated by the current analysis, a nomenclature com- Shah and London 

parison is provided. While [l l] uses a superscript k = 1,2,3, [III Current analysis 

or 4 enclosed in parentheses to indicate the fundamental 
solution type and a subscript j = i or o to indicate inner or e* E 

outer wall heated, the current nomenclautre generally relies NuLkij 

on the text. The subscript I = i or o in [ll], which indicates at r*’ 
Nu,_ or Nui, 

which wail the dimensionless quantity is evaluated, cor- X* ;,I+ 

responds to iw and ow, respectively, of the current nomencla- X$‘(;’ value of .Z/Pr corresponding to the 

ture. Table Al completes the comparison. thermal entrance length as defined in 
footnote t of Table 4 

e(k) x .m, B 
e IllaX., maximum e at a given value of Z 

UNE SOLUTION NUMERIQUE DU CHAMP DE TEMPERATURE EN DEVELOPPEMENT 
POUR L’ECOULEMENT LAMINAIRE DANS DES CONDUITES ANNULAIRES 

EXCENTRIQUES 

Rbum&-L’tquation d’inergie en coordonn&s bipolaires est utilisee pour dCterminer la distribution de 
tempkrature dans la r&ion d’entrte thermique d’une conduite annulaire excentrique. La solution numtrique 
s’appuie sur une mtthode implicite g directions altemles. L’analyse de I’hydrodynamique dans la r&on 
d’entrte, nCcessaire pour la solution thermique, est obtenue selon une methode publike par les auteurs. Une 
solution de Graetz dkja publike pour une section annulaire excentrique et une solution hydrodynamique et 
thermique connue pour la rtgion d’entrk de tubes circulaires sont utilisees pour vtrifier la pr&ente solution. 
On consid&e ici 17 combinaisons de conditions aux Iimites thermiques, de nombres de Prandtl, et de 
gComCtrie annulaire. La gtomttrie annulaire avec une excentriciti relative et un rapport de rayons &gaux zi 
0,5 est utilisie pour dtudier les effets de l’excentriciti et du nombre de Prandtl sur les distributions de 

temp&ature de fluide et de flux thermique $ la paroi. 

EINE NUMERISCHE L&SUNG FUR DEN TEMPERATURVERLAUF BE1 LAMINARER 
ANLAUFSTROMUNG IN EXZENTRISCHEN RING KANjiLEN 

Zusammenfassung-Die Energiegleichung in Bipolarkoordinatendarstellung wird zur Bestimmung der 
Temperaturverteilung im thermischen Anlaufgebiet eines exzentrischen ringfiirmigen Kanals herangezogen. 
Fiir die numerische L6sung wird ein implizites Verfahren der altemierenden Richtungen angewandt. Die 
Berechnung des hydrodynamischen Anlaufgebiets, welche die Geschwindigkeitsverteilungen liefert, die fiir 
die therm&he Liisung beniitigt werden, wurde aus einer ver6ffentlichten Liisung der oben genannten 
Autoren gewonnen. Eine veriiffentlichte Graetz-LGsung fiir einen exzentrischen Ringraum und eine 
vertiffentlichte LSsung fiir das gekoppelte thermische und hydrodynamische Anlaufgebiet fiir das Kreisrohr 
werden zur f&m-qMifung der vorliegenden LGsung verwendet. Diese Untersuchung behandelt 17 Komhina- 
tionen von fundamentalen therm&hen Randbedingungen, Prandtl-Zahlen und Ringraumgeometrien. Die 
Ringraumgeometrie mit gleicher relativer Exzentrizitit und einem Radienverhlltnis von 0,s wird zur 
Untersuchung der Einfliisse der Exzentrizigt und der Prandtl-Zahl auf die Verteilungen von Fluidtempera- 

tur und OberlIlchenw~rmestrom verwendet. 

YMCJIEHHbIm PAWET M3MEHEHI48 TEMllEPATYPHOrO FlOJIR rIPI 
HEYCTAHOBHBBIEMCR JIAMHHAPHOM TEYEHMM B 3KCLIEHTPWIECKkIX 

KOJIbuEBbIX KAHAJIAX 

AHHoTaunn - &IX onpenenenan rehinepa-rypuoro nons Ha HaYanbHoM TennoaoM ygacTKe 3KcueHTpH- 
qecKor0 KonbueBoro KaHana Hcnonb30BaHo ypaenemre 3Heprew B 6HnonnpHbIx XoopnHnaTax. ‘Iecnen- 
HOe peIL,eHHe BbluOnHeHO HellBHbIM MeTOAOM nepeMeHHbIX HanpaB,EHb,k Ha OCHOBe paHee npeA,,OmeH- 
nor0 aeTopaMB pemenar nposeaen aHam mApoAmiaMwiecKor0 HavanbHoro yqacTKa c uenbK3 

onpenenerisn nom cropocreii, HeO6XOAHMOrO Ann pemeHm Tennoeoii 3aAaw. nOnyqeHHbIe pesynb- 
TaTbI IIpOBepeHbI C IIOMOIIWO 83BeCTHOrO peIIIeHH% ,-peTua An%, 3aCI,eHTpW,eCKOrO KaHana, a TaKxe 

Ei3BeCTHOrO COBMeCTHOrO pelIIeHHSI AJUI TeuJIOBOrO H WL,POLIH”aMUSeCKO~O HaSanbHbIX yqaCTKOB 

Kpyrnoii Tpy6Id. npOBeAeH aHam I7 Ha6opoe oCHonHbIx TennoBbIx rpaHmmlx ycnoBafi, 3HaqewA 

wicna IlpaHATnn H KOnbueBOii reoMeTpm KaHana. Konbueaaa reoMeTpaa c paBHbIM OTHOCBTe,IbHbIM 

3KCueHTpIiCBTeTOM W OTHOIIIeHHeM paAHyCOB, paBHblM 0.5, BCuOnb3yeTCFi AJll HCCneAOBaHHR BnHIlHHR 

3KcuenTp5iccaTeTa H qacna npaHATnR Ha pacnpenenesHe TehmepaTypbr EHAKOCTH H nno-ruocm 
Tennoaoro noToKa Ha nosepxsocre. 


